Простая случайная выборка
При проведении простой случайной выборки (Simple Random Sampling — SRS) каждый элемент совокупности имеет известную и равную вероятность отбора. Более того, каждая возможная выборка данного объема (n) имеет известную и равную вероятность того, что она станет выборочной совокупностью. Это означает, что каждый элемент отбирается независимо от другога. Выборка формируется произвольным отбором элементов из основы выборки. Этот метод похож на розыгрыш лотереи, когда таблички с именами участников помещаются в барабан, который встряхивается, и из него произвольным образом извлекают отдельные таблички, в результате объективно определяются имена победителей.
Простая случайная выборка (Simple Random Sampling — SRS) - Вероятностный метод выборки, согласно которому каждый элемент генеральной совокупности имеет известную и равную вероятность отбора. Каждый элемент выбирается независимо от каждого другого элемента, и выборка формируется произвольным отбором элементов из основы выборки.
При простой случайной выборке исследователь сначала формирует основу выборочного наблюдения, в которой каждому элементу присваивается уникальный идентификационный номер. Затем генерируются случайные числа, чтобы определить номера элементов, которые будут включены в выборку. Эти случайные числа могут генерироваться компьютерной программой.
Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения. Во-первых, часто сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.
Во-вторых, результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных. В-третьих, результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов. В-четвертых, в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки. Простая случайная выборка не часто используется в маркетинговых исследованиях. Более популярен метод систематической выборки.
Систематическая выборка
При проведении систематической выборки (systematic sampling) сначала задают произвольную отправную точку, а затем из основы выборочного наблюдения последовательно выбирают каждый i-и элемент. Интервал выборки i определяется как отношение объема совокупности N к объему выборки п, с округлением результата до ближайшего целого числа. Например, совокупность состоит из 100 тысяч элементов, а желательный объем выборки равен тысяче респондентов. В этом случае интервал выборки i равен 100. Выбирается случайное число между 1 и 100. Если, например, это число равно 23, то выборка состоит из элементов 23, 123, 223, 323, 423, 523 и т.д.
Систематическая выборка (systematic sampling) - Вероятностный метод выборки, в соответствии с которым сначала задают произвольную отправную точку, а затем из основы выборочного наблюдения последовательно выбирают каждый i-й элемент.
Обшей чертой систематической выборки и простой случайной выборки является то, что каждый элемент генеральной совокупности имеет известную и равную вероятность выбора. Систематическая выборка отличается от SRS тем, что только допустимые выборки объема п, которые можно получить из генеральной совокупности, имеют известную и равную вероятность выбора. Остальные выборки объема п имеют нулевую вероятность выбора.
При систематической выборке исследователь предполагает, что элементы совокупности расположены в определенном порядке. В некоторых случаях принцип сортировки (например, алфавитный перечень в телефонной книге) не имеет отношения к исследуемой характеристике. В других случаях сортировка непосредственно связана с исследуемой характеристикой. Например, имена владельцев кредитных карточек приводятся с учетом суммы их баланса, а названия фирм определенной отрасли располагаются согласно годовому объему их продаж. Если элементы совокупности расположены по принципу, не связанному с исследуемой характеристикой, результаты систематической выборки аналогичны результатам SRS.
С другой стороны, если принцип расположения элементов связан с исследуемой характеристикой, систематический отбор увеличивает репрезентативность выборки. Если фирмы какой-либо отрасли расположены по принципу увеличения годового объема продаж, систематическая выборка будет включать как мелкие, так и крупные фирмы. Простая случайная выборка в данном случае может быть нерепрезентативной, включая, например, только мелкие фирмы или непропорциональное число мелких фирм. Если расположение элементов выборки носит циклический характер, систематическим методом можно уменьшать представительность выборки. В качестве примера рассмотрим применение систематического отбора для формирования выборки ежемесячных объемов продаж универмага из основы, содержащей ежемесячные объемы продаж за последние 60 лет. Если задать выборочный интервал, равный 12, то конечная выборка не будет отражать ежемесячные изменения в объемах продаж.
Систематическая выборка дешевле и проще, чем простая случайная, поскольку случайный отбор осуществляется только один раз. Кроме того, случайные числа не должны соответствовать определенным элементам, как в SRS. Учитывая, что некоторые перечни содержат миллионы элементов, использование этого метода значительно экономит время, что, в свою очередь, способствует снижению затрат, связанных с исследованием. Если совокупность обладает информацией об исследуемой характеристике, систематический отбор дает возможность получить более репрезентативную и достоверную (с меньшей ошибкой выборки) выборку, чем метод SRS. Еще одно важное преимущество: систематический отбор можно применять даже не зная структуру основы выборочного наблюдения. Например, можно опросить каждого i-го человека, покидающего универмаг или торговый центр. Поэтому систематический отбор часто применяется при проведении почтовых и телефонных опросов, а также интервью-"перехватов" в торговых центрах.
Стратифицированная выборка
Стратифицированная, или расслоенная, выборка (stratified sampling) — это процесс, состоящий из двух этапов, в котором совокупность делится на подгруппы (слои, страты, strata). Слои должны взаимно исключать и взаимно дополнять один другого, чтобы каждый элемент совокупности относился к одному и только одному слою, и ни один элемент не был упущен. Далее, из каждого слоя случайным образом выбираются элементы, при этом обычно используется метод простой случайной выборки. Формально, выбор элементов из каждого слоя может осуществляться только с помощью SRS. Однако на практике иногда применяется систематический отбор и другие вероятностные выборочные методы. Отличие стратифицированной выборки от квотной состоит в том, что элементы в ней выбираются скорее случайно, а не из удобства или на основании мнения исследователя. Главная задача стратифицированной выборки — увеличение точности без увеличения затрат.
Стратифицированная, расслоенная выборка (stratified sampling) - Двухэтапный метод вероятностной выборки, согласно которому генеральная совокупность сначала делится на подгруппы или слои (страты). Затем элементы случайным образом выбираются из каждого слоя.
Переменные, используемые для деления совокупности на слои, называются стратификационными переменными. Критерии для их выбора: однородность, неоднородность, взаимосвязанность и стоимость. Элементы, относящиеся к одному слою, должны быть как можно более однородными, а относящиеся к разным слоям — наоборот, как можно более разнородными. Кроме того, стратификационные переменные должны быть тесно связаны с исследуемой характеристикой. Чем больше переменные соответствуют этим критериям, тем эффективнее уменьшение нежелательных отклонений в выборке. В конце концов, переменные должны снижать стоимость процесса расслоения, будучи простыми в оценке и применении. Как правило, для стратификации используют такие переменные, как демографические характеристики (как показано на примере квотной выборки), разновидность покупателя (владельцы кредитной карточки или те, кто ее не имеет), величина фирмы или отрасль промышленности. Для стратификации можно использовать несколько переменных, однако больше двух применяют редко, поскольку это непрактично и экономически неоправданно. Несмотря на то, что количество слоев в расслоенной выборке остается предметом спора, опыт показывает, что использовать нужно не больше шести. При использовании больше шести слоев любое повышение точности сводится на нет увеличением стоимости расслоения и отбора.
Другое важное решение связано с использованием пропорциональной или непропорциональной выборки (см. рис. 11.2). При пропорциональном стратификационном отборе объем выборки, полученной из каждого слоя, пропорционален доле этого слоя в объеме генеральной совокупности. При непропорциональном стратификационном отборе объем выборки, полученной из каждого слоя, пропорционален доле этого слоя в объеме генеральной совокупности и среднеквадратичному отклонению распределения исследуемой характеристики среди всех элементов этого слоя. Логика непропорциональной выборки проста. Во-первых, слои относительно большего размера больше влияют на определение средней для генеральной совокупности. Следовательно, эти слои больше влияют на формирование результатов выборочного наблюдения. Таким образом, слои должны быть представлены большим количеством элементов. Во-вторых, для повышения точности оценки следует отбирать больше элементов из слоев с большим среднеквадратичным отклонением, и меньше элементов — из слоев с меньшим среднеквадратичным отклонением. (Если все элементы слоя идентичны, выборка, состоящая из одного элемента, обеспечит получение полной информации.) Обратите внимание, что эти методы идентичны при условии, что исследуемая характеристика имеет одно и то же среднеквадратичное отклонение в каждом слое.
При применении непропорционального отбора необходимо рассчитать среднеквадратичное отклонение распределения исследуемой характеристики среди элементов слоя. Поскольку эта информация не всегда доступна, исследователю часто приходится полагаться на интуицию и логику, определяя объем выборки для каждого слоя. Например, в крупных розничных магазинах можно ожидать большего отклонения в объемах продаж некоторых продуктов, чем в небольших магазинах. Поэтому крупные магазины представлены в выборке непропорционально большим количеством элементов. Когда исследователя в первую очередь интересует выявление различий между слоями, обычно создают одинаковые по объему выборки из каждого слоя.
Стратификационный метод обеспечивает наличие в выборке всех важных подгрупп. Это особенно важно, если исследуемая характеристика неравномерно распределена среди элементов генеральной совокупности. Например, распределение дохода семей неравномерно, так как годовой доход большинства семей составляет меньше 50 тысяч долларов, и лишь немногие семьи имеют годовой доход, равный 125 тысяч долларов и выше. Если применить простую случайную выборку, семьи с доходом 125 тысяч долларов и выше могут не быть адекватно представлены. Стратифицированная выборка позволяет обеспечить соответствующее количество таких семей в выборке. Она сочетает в себе простоту метода SRS с возможностью повышения точности. Поэтому данный метод формирования выборки весьма популярен.
Кластерная выборка
В кластерной выборке (cluster sampling) изучаемая совокупность сначала делится на взаимоисключающие и взаимодополняющие подгруппы, или кластеры (clusters). Затем с помощью вероятностного метода выборки, такого как SRS, формируется случайная выборка кластеров. В выборку включаются либо все элементы отобранного кластера, либо проводится их отбор вероятностным методом. Если в выборку включаются все элементы каждого отобранного кластера, то такая процедура называется одноступенчатой кластерной выборкой. Если выборка получена с помощью вероятностного отбора из каждого выбранного кластера, такая процедура называется двухступенчатой кластерной выборкой. Как показано на рис. 11.3, существуют два вида двухступенчатой кластерной выборки — простая двухступенчатая кластерная выборка с использованием SRS и вероятностная выборка, пропорциональная объему (PPS). Кроме того, кластерная выборка может состоять из нескольких (больше двух) этапов, выступая как многоступенчатая кластерная выборка.
Кластерная выборка (cluster sampling) - Сначала изучаемая совокупность делится на взаимоисключающие и взаимодополняющие подгруппы, называемые кластерами. Затем с помощью вероятностного метода выборки, такого как простая случайная выборка, отбираются кластеры. В выборку включаются либо все элементы отобранного кластера, либо проводится их отбор вероятностным методом.
Основное различие между кластерной и стратифицированной выборкой состоит в том, что в первом случае используются только отобранные подгруппы (кластеры), в то время как в стратифицированной выборке все подгруппы (слои) используются для дальнейшего отбора. Эти методы преследуют разные цели. Цель кластерной выборки — увеличить эффективность выборки, уменьшив затраты на ее проведение. Цель стратифицированной выборки — увеличение точности. По однородности и неоднородности критерии формирования кластеров прямо противоположны критериям формирования слоев. Элементы кластера должны быть максимально разнородны, а сами кластеры — как можно более однородными. В идеале каждый кластер должен представлять собой небольшую модель генеральной совокупности. При кластерной выборке основа выборочного наблюдения необходима только для кластеров, которые вошли в выборку.
Распространенная форма кластерной выборки — территориальная выборка (area sampling), в которой кластеры состоят из географических территорий, таких как округа, жилые районы или кварталы. Если отбор основных элементов проводится в один этап (например, исследователь выбирает некоторые кварталы, а затем все семьи, живущие в этих кварталах, включаются в выборку), такой выборочный метод называется одноступенчатой территориальной выборкой. Если отбор основных элементов проводится в два (или больше) этапа (исследователь выбирает кварталы, а затем в каждом таком квартале отбирает семьи, которые будут включены в выборку), такой метод называется двухступенчатой (или многоступенчатой) территориальной выборкой. Отличительная черта одноступенчатой территориальной выборки заключается в том, что все семьи из выбранных кварталов (или географических регионов) включаются в выборку.